

Physics Unit 8: Circuits Review

- 1. Know about charge, current, potential, voltage, resistance, resistors, circuit diagrams, series, parallel, ammeters, voltmeters, power, kWh, AC/DC, thermal hazards, shock hazards
- 2. A 15-A current is maintained in a simple circuit with a total resistance of 2000 Ω . What net charge passes through any point in the circuit during a 2-second interval?
- 3. When a light bulb is connected to a 24 V battery, a current of 0.2 A passes through the bulb filament. What is the resistance of the filament?
- 4. Three resistors, $100-\Omega$, $125-\Omega$, $150-\Omega$, are connected in series in a circuit. What is the equivalent resistance of this combination of resistors?
- 5. Ten 50- Ω and five 25- Ω light bulbs and a 9 V battery are connected in a series circuit. What is the current that passes through each bulb?
- 6. Three resistors, $100-\Omega$, $125-\Omega$, $150-\Omega$, are connected in parallel in a circuit. What is the equivalent resistance of this combination of resistors?
- 7. Two resistors, $50-\Omega$ and $25-\Omega$, are connected in parallel with a 24 V battery. What is the total current in the circuit?
- 8. Three resistors are connected as shown in the figure. The potential difference between points A and B is 12 V. What is the equivalent resistance between the points A and B?

Use the circuit diagram to answer 9 and 10.

- 9. What is the equivalent resistance of the circuit?
- 10. What is the current in the 90 Ω resistor?
- 11. A 15-A current is maintained in a simple circuit with a total resistance of 1500 Ω . How much energy is dissipated in 5 seconds?
- 12. A 15-A current is maintained in a simple circuit that consists of a resistor between the terminals of an ideal battery. If the battery supplies energy at a rate of 75 W, how large is the resistance?
- 13. An AC current has a peak value of 8.49 A. Determine the rms value of the current.

Physics Unit 8: Circuits Review Answers

2.
$$I = \frac{Q}{t}$$
$$15 A = \frac{Q}{2 s}$$
$$Q = 30 C$$
3.
$$V = IR$$

- 24 V = (0.2A)R $R = 120 \Omega$
- 4. $R_{eqv} = 100 \,\Omega + 125 \,\Omega + 150 \,\Omega = 375 \,\Omega$
- 5. Series has same current through all bulbs. $R_{eqv} = 10(50 \ \Omega) + 5(25 \ \Omega) = 625 \ \Omega$ $V = IR_{eqv}$ $9 \ V = I(625 \ \Omega)$ $I = 0.0144 \ A$

6.
$$\frac{1}{R_{eqv}} = \frac{1}{100 \,\Omega} + \frac{1}{125 \,\Omega} + \frac{1}{150 \,\Omega}$$
$$\frac{1}{R_{eqv}} = 0.02467 \frac{1}{\Omega}$$
$$R_{eqv} = 40.5 \,\Omega$$

7. $\frac{1}{R_{eqv}} = \frac{1}{50 \Omega} + \frac{1}{25 \Omega}$ $\frac{1}{R_{eqv}} = 0.06 \frac{1}{\Omega}$ $R_{eqv} = 16.7 \Omega$ $V = IR_{eqv}$ $24 V = I(16.7 \Omega)$ I = 1.44 A

8. Do the series part first (most inside). $R_{series} = 75 \ \Omega + 60 \ \Omega$ $R_{sereis} = 135 \ \Omega$ Combine the parallel branches. $\frac{1}{R_{eqv}} = \frac{1}{135 \ \Omega} + \frac{1}{90 \ \Omega}$

- $\frac{1}{R_{eqv}} = 0.0185 \frac{1}{\Omega}$ $R_{eqv} = 54 \Omega$
- 9. Combine the parallel branches.

$$\frac{1}{R_{parallel}} = \frac{1}{50 \ \Omega} + \frac{1}{150 \ \Omega}$$
$$\frac{1}{R_{parallel}} = 0.0267 \frac{1}{\Omega}$$
$$R_{parallel} = 37.5 \ \Omega$$
Combine that in series.
$$R_{eqv} = 90 \ \Omega + 37.5 \ \Omega$$
$$R_{eqv} = 127.5 \ \Omega$$

10. All the current from the battery goes through the 90 Ω resistor.

$$V = IR_{eqv}$$

 $15 V = I(127.5 \Omega)$
 $I = 0.118 A$

11.
$$P = I^2 R$$

 $P = (15 A)^2 (1500 \Omega)$
 $P = 337500 W$
 $P = \frac{W}{t}$
 $337500 W = \frac{W}{5 s}$
 $W = 1.69 \times 10^6 J$
12. $P = I^2 R$
 $75 W = (15 A)^2 R$
 $R = 0.333 \Omega$

13.
$$I_{rms} = \frac{I_0}{\sqrt{2}}$$

 $I_{rms} = \frac{8.49 A}{\sqrt{2}}$
 $I_{rms} = 6.00 A$